Работа вам нужна срочно. Не волнуйтесь, уложимся!
Заполните, пожалуйста, данные для автора:
- 22423 авторов готовы помочь тебе.
- 2402 онлайн
Исследовать функцию на экстремум и вычислить значение функции в точках экстремума:
Решение.
Найдем частные производные.
2. Решим систему уравнений.
-4*x-4*y+4 = 0
-4*x-6*y+10 = 0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
2*y-6 = 0
Откуда y = 3
Данные значения y подставляем в выражение для x. Получаем: x = -2
Количество критических точек равно 1.
M1(-2;3)
3. Найдем частные производные второго порядка.
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(-2;3)
AC - B2 = 8 > 0 и A < 0 , то в точке M1(-2;3) имеется максимум z(-2;3) = 16
Вывод: В точке M1(-2;3) имеется максимум z(-2;3) = 16;
Исследуйте на экстремум функцию.
y = х2 – 10х + 5
Найти экстремумы функций двух переменных
z = 2x3 + 6xy2 – 30x – 24y.
Исследовать на экстремум:
Необходимое условие экстремума функции одной переменной.
Уравнение f'0(x*) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.
Достаточное условие экстремума функции одной переменной.
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) < 0
то точка x* - локальный (глобальный) максимум.
Решение.
Находим первую производную функции:
y' = 6x2+6x
или
y' = 6x(x+1)
Приравниваем ее к нулю:
6x2+6x = 0
x1 = 0
x2 = -1
Вычисляем значения функции
f(0) = -11
f(-1) = -10
Ответ:
fmin = -11, fmax = -10
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 12x+6
Вычисляем:
y''(0) = 6>0 - значит точка x = 0 точка минимума функции.
y''(-1) = -6<0 - значит точка x = -1 точка максимума функции.
Найти стационарные точки и исследовать на экстремум функцию
z = x2 + y2 – 2x – 2y+ 8
Исследовать на экстремум функцию z = x2 + y2 – 2x – 2y+ 8
1. Найдем частные производные.
2. Решим систему уравнений.
2x-2 = 0
2y-2 = 0
Получим: x = 1, y = 1
критическая точка M1(1;1)
3. Найдем частные производные второго порядка.
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(1;1)
AC - B2 = 4 > 0 и A > 0 , то в точке M1(1;1) имеется минимум z(1;1) = 6
Вывод: В точке M1(1;1) имеется минимум z(1;1) = 6;
Исследовать на экстремум функцию:
Исследовать функцию z(x,y) на экстремум
Исследовать на экстремум функцию:
Вычислим производную этой функции и найдем стационарные точки, в которых она обращается в нуль:
Решая это уравнение, находим корни x1 = 1 и x2 = 2. Они являются подозрительными на экстремум в данной задаче. При этом знаки производной нашей функции распределены следующим образом:
Согласно теореме о достаточном условии экстремума первого порядка, полученные точки являются точками локального экстремума, а именно: x1 = 1 — точка локального максимума, причем f(x1) = 11, а x2 = 2 — точка локального минимума, причем f(x2) = 10.
Глобальных экстремумов в этой задаче нет. Это видно из того, что
Итак, локальный максимум достигается в точке x = 1 и равен 11, локальный минимум достигается в точке x = 2, и равен 10.
Исследуйте на экстремум функцию z = z(x;y).
Исследовать на экстремум:
y = (2*x-8)*(9*x+1)
Необходимое условие экстремума функции одной переменной.
Уравнение f'0(x*) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.
Достаточное условие экстремума функции одной переменной.
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) < 0
то точка x* - локальный (глобальный) максимум.
Решение.
Находим первую производную функции:
y' = 36x-70
Приравниваем ее к нулю:
36x-70 = 0
Вычисляем значения функции
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 36
Вычисляем:
значит эта точка - минимума функции.
Найти экстремумы функции z(x,y) при данном условии:
Исследовать на экстремум функцию:
Найдем производную f′ (x) = ex − e−x . Чтобы найти критические точки функции f(x), приравняем эту производную к нулю:
Очевидно, что точка x = 0 является решением последнего уравнения. Функция f′(x) строго возрастает (поскольку ). Поэтому она отрицательна при x < 0 и положительна при x > 0.
Следовательно, точка x = 0 является точкой строгого локального минимума функции f(x), и f(0) = 2 — соответствующее минимальное значение.
В данной ситуации можно также применить теорему о достаточном условии экстремума второго порядка. Поскольку f′′(0) = 2 > 0, функция f(x) имеет строгий локальный минимум в точке x = 0.
Кроме того, этот минимум глобальный, потому что
Ответ: точка x = 0 является точкой глобального минимума для исследуемой функции и fmin = f(0) = 2.
Найти наибольшее и наименьшее значения функции z(x,y) в области D:
Исследовать на экстремум функцию:
y = x3+6*x2-4, [-4;1].
Необходимое условие экстремума функции одной переменной.
Уравнение f'0(x*) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.
Достаточное условие экстремума функции одной переменной.
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) < 0
то точка x* - локальный (глобальный) максимум.
Решение.
Находим первую производную функции:
y' = 3x2+12x
или
y' = 3x(x+4)
Приравниваем ее к нулю:
3x(x+4) = 0
x1 = 0
x2 = -4
Вычисляем значения функции на концах отрезка
f(0) = -4
f(-4) = 28
f(-4) = 28.0000000000000
f(1) = 3.00000000000000
Ответ: fmin = -4, fmax = 28.
Исследовать на экстремум функцию
Как обычно, начнем с нахождения производной исследуемой функции и точек, подозрительных на экстремум:
Легко видеть, что точка x = 0 является критической.
Найдем вторую производную:
Очевидно, f′′(0) = 0. Воспользуемся теоремой о достаточном условии экстремума n-го порядка и будем дифференцировать функцию до того момента, пока не появится отличная от нуля производная:
Значит, x = 0 — точка локального минимума функции f(x).
Из предыдущего примера следует, что при . В то же время . Поэтому f′′(x) > 0 при . Отсюда следует, что производная f′(x) обращается в нуль в единственной точке x = 0.
Так как , минимум в точке x = 0 является глобальным.
Ответ: есть один глобальный минимум f(0) = 4.
С помощью второй производной исследуйте на экстремум функцию . Найдите наибольшее М и наименьшее m значения этой функции на отрезке [-1, 2].
Определяем критические точки
Определяем вторую производную функции
Определяем знаки второй производной в критических точках
Т. к. вторая производная положительная, то в точке х=0 минимум
Т. к. вторая производная отрицательная, то в точке х=1 максимум
Наибольшее М и наименьшее m значения этой функции на отрезке [-1, 2]
Т. к. обе критические точки принадлежат указанному отрезку, то определяем значения функции в полученных точках и на концах отрезка
Т. о., М=у(-1)=6 m=у(2)=-3
Исследовать на экстремум функцию:
Подозрительные на экстремум точки найдем с помощью леммы Ферма. Так как
то единственная подозрительная на экстремум точка (в которой все частные производные обращаются в нуль) — это точка a = (3, −2, −1).
Определим, есть ли в этой точке экстремум. Для этого найдем все частные производные второго порядка
и составим из них матрицу полной второй производной f′′(a):
Главные миноры этой матрицы чередуют знаки:
По теореме (достаточное условие экстремума второго порядка) в точке a локальный максимум. Ответ: локальный максимум достигается в точке a = (3, −2, −1) и равен 14.
Ответ: локальный максимум достигается в точке a = (3, −2, −1) и равен 14.
Найти экстремумы функции:
Подозрительные на экстремум точки найдем с помощью леммы Ферма. Так как
то единственной стационарной точкой будет точка a = (0, 0).
Посмотрим, есть ли в ней экстремум. Для этого вычислим частные производные второго порядка
и составим из них матрицу второй производной в точке a:
Очевидно, ее определитель равен нулю. Значит, достаточные условия экстремума из теоремы (достаточное условие экстремума второго порядка) в данном случае не применимы.
Придется использовать определение экстремума. Рассмотрим разность . Она больше нуля при всех y > 0 и меньше нуля при y < 0. Поэтому в точке a = (0, 0) нет экстремума.
Ответ: у функции f нет экстремумов.
Найти экстремумы функции
Очевидно,
и единственная стационарная точка — это a = (0, 0).
Далее вычисляем частные производные второго порядка
и выписываем матрицу второй производной в точке a:
Ее определитель равен нулю. Достаточные условия экстремума опять не работают. С другой стороны, . Поэтому в точке (0, 0) глобальный минимум.
Ответ: есть один глобальный минимум f(0, 0) = 0.
Исследовать на экстремумы функцию.